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The algorithm for determining a global Poincaré section is applied to a previously studied dynamical system
on R23S1 and a one-parameter family of embeddings of the strange attractor it generates intoR3. We find that
the topological properties of the attractor are embedding dependent to a limited extent. These embeddings
rigidly preserve mechanism, which is a simple stretch and fold. The embeddings studied show three discrete
topological degrees of freedom: parity, global torsion, and braid type of the genus-one torus bounding the
embedded attractor.
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I. INTRODUCTION

Embeddings are the primary tool used by experimentalists
to study scalar time series generated by chaotic dynamical
systems. A number of embedding theorems guarantee that
data generated by ann-dimensional dynamical system can be
used to recreate the dynamics of that system in a space of
sufficiently high dimension[1,2]. However, these theorems
are silent on a number of points—in particular, on how the
geometry of an attractor depends on the embedding.

In order to address this question, Mindlin and Solari stud-
ied a one-parameter family of mappings intoR3 [3]. In par-
ticular, they mapped chaotic scalar time series generated by a
dynamical system that had been found to represent a fluid
experiment fairly accurately[4,5]. They found two ranges of
parameter values in which embeddings existed, separated by
a range of parameter values at which self-intersections oc-
curred. They reached two conclusions that might create prob-
lems for the applications of topological analyses to data. The
first is that applying the traditional algorithm for choosing a
Poincaré section creates subtleties in constructing and under-
standing braids in the attractor. This presents a problem be-
cause chaotic data sets have been identified principally by
the braids(unstable periodic orbits and their links) that they
contain. The second is that the topological properties of a
strange attractor are not invariant under embeddings. In par-
ticular, they found that the same orbit, in two different em-
beddings, appeared to have different topological entropies.
This presents a problem because topological entropy is em-
bedding independent[6].

Recent advances in our understanding of the structure of
chaos in three dimensions[7,8] enable us to return to the
problem and provide a more positive answer to the embed-
ding question. There is now an algorithm for properly con-
structing all the components of a Poincaré section in any
dissipative dynamical system with Lyapunov dimension
dL,3 [7,8]. With such a choice, constructing and interpret-
ing braids is algorithmic. We also find, in agreement with
Mindlin and Solari, that the topological structure is not em-
bedding independent. However, we find that there are only
three degrees of freedom that are available to change the
topological structure of a strange attractor with embedding:
parity, global torsion, and braid type of the torus bounding
the embedded attractor.

This work is organized as follows. In Sec. II we introduce
the dynamical system used for this and the previous study of
embeddings. We show that chaos is generated by a simple
Smale horseshoe(stretch and fold) mechanism. In Sec. III
we describe the topological properties of this attractor in the
natural phase space, which is the solid torusR23S1. These
properties are unchanged under the preferred embedding of
R23S1 in R3. The one-parameter family of embeddings into
R3 that was studied in Ref.[3] is introduced in Sec. IV. In
Sec. V we apply the algorithm for choosing a global
Poincaré section[7,8] and discuss how this is related to in-

tersections of the embedded attractor with the planeẊ=0.
Proper choice of the global Poincaré section positively re-
solves the braid problem. In Sec. VI we describe extrinsic
embeddings obtained with three different choices of the de-
lay parameter. Between parameter values at which embed-
dings occur are values at which self-intersections occur. An
algorithm for determining self-intersections is presented in
Sec. VII. In this section we also describe how the extrinsic
topology of the embedding changes on passing through self-
intersections. We summarize our findings in the closing sec-
tion. These findings are(1) there is an algorithm for con-
structing the components of a Poincaré section for any
embedding. When applied, construction of braids is algorith-
mic. (2) The topological properties of the strange attractor
can vary from one embedding to another. However, the only
ways they can differ in the class of embeddings studied are
the handedness of the folding, the global torsion, and the
braid type of the period-one orbit guiding the bounding
torus.

II. DYNAMICAL SYSTEM AND PHASE SPACE

The equations used in Ref.[3] as a vehicle to study the
properties of embeddings are

Ẋ = Y,

Ẏ = mfsfdX + nfsfdY − X3 + X2Y,

ḟ = v, s1d

where fsfd=f1+e cossfdg. This set of equations describes a
periodically forced Takens-Bogdanov scenario. They have

PHYSICAL REVIEW E 69, 056215(2004)

1539-3755/2004/69(5)/056215(8)/$22.50 ©2004 The American Physical Society69 056215-1



been used successfully to model the behavior of a fluid
heated from below[4]. As a result, we treat the time series
Xstd, or Xsid, the way we would treat experimental data.

Equations(1) were integrated with a standard RK4 inte-
grator with time step sizesdt=10−3T andT/2k, k=10, where
T is the period of the external forcing,T=2p /v. The equa-
tions were studied at control parameter valuesm=1.0434,
n=−1.0,e=0.45, andv=0.399. For these values of the con-
trol parameters the system(1) generates two disconnected
strange attractors. Only one of these is shown in theX−Y
projection in Fig. 1. The other strange attractor is obtained by
inversion sX,Yd→ s−X,−Yd. For slightly larger value,n=
−0.9m, there is a symmetry-restoring bifurcation leading to a
strange attractor with inversion symmetrysX,Yd→ s−X,−Yd.

The phase space for the dynamical system(1) is R23S1.
Any stroboscopic sectionf=constant can be chosen as a
Poincaré section in this phase space. The intersection of the
strange attractor with the sectionf=0 is shown in Fig. 2. A
first return map of this section to itself was constructed and is
shown in Fig. 3. The coordinate used to construct this return
map is the arc length measured along an approximation to

the intersection shown in Fig. 2. The return map shows that
the strange attractor is described by a branched manifold
with two branches[9–12]. Unstable orbits of periods 1, 2, 4,
and 5 were located by the method of close returns on the
scalar time seriesXstd, and by the method of close returns on
the intersection shown in Fig. 2. These orbits were used for
topological analyses. The period-one and period-two orbits
are shown in Fig. 4. This figure shows theXstd value along
these two orbits for two full driving periods.

III. INTRINSIC STRUCTURE AND PREFERRED
EMBEDDINGS

The phase space for the dynamical system(1) is the in-
trinsic solid torusR23S1. The structure of the attractor in
this phase space was determined by computing the relative
rotation rates[12,13] of the period-one, -two, and -four or-
bits extracted from the data. For the period-one and period-
two orbits this topological index can be determined by count-
ing crossings in Fig. 4. For the embedding shown, withY

=Ẋ out of the plane, all crossings are left handed. There are
ten (negative) crossings, so the linking number is −5 and the

FIG. 1. A strange attractor generated by Eq.(1) is plotted in the

X,Ẋ plane. Another attractor is obtained from a change in initial
conditions: sX,Yd→ s−X,−Yd. Parameter valuesm=1.0434, n=
−1.0, e=0.45, andv=0.399.

FIG. 2. Intersection of the strange attractor with a stroboscopic
section(Poincaré section) at f=0.0.

FIG. 3. Return map for the stroboscopic section(Fig. 2) onto
itself. The parameters is related to the arc length along the inter-
section of the attractor with the planef=0.

FIG. 4. Period-one and period-two orbits in theX-t plane.
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average number of rotations per period is −5/2.
The computation is simpler if we project the difference

X2std−X1std onto either theX-t plane (Fig. 5) or the X-Y
plane (Fig. 6). In the first case it is sufficient to count the
number of zero crossings. In the second case we count the
number of times this difference rotates around the origin.

The relative rotation rates for the first three orbits in the
period-doubling cascade are

RRR 1 2 4

1 23 1/2 1/2

2 1/2 1/2 , 1/4

4 1/2 1/2 , 1/4

s2d

This shows that generation of chaos is due to a right-
handed Smale horseshoe mechanism together with a global

torsion of −3 [12,13]. The right- and left-handed Smale
horseshoe templates are described by the template and lay-
ering matrices[12]

Right-handed Left-handed

Template matrix f0 0

0 1g f0 0

0 −1g
Layering matrix f0 −1g f0 1g

These two branched manifolds are mirror images of each
other. Linking numbers(and relative rotation rates) of all
orbit pairs in the right-handed Smale horseshoe with zero
global torsion are positive or zero. Linking numbers of cor-
responding orbits in the left-handed Smale horseshoe are
negatives of those in the right-handed Smale horseshoe. The
topological organization of all orbits in the right-handed
branched manifold is the mirror image of those in the left-
handed branched manifold. The orbit forcing order[14,15] in
the horseshoe is independent of the handedness and the glo-
bal torsion.

The global torsion −3 is compatible with estimates based
on reasonable physical approximations. In driven systems
the global torsion is slightly detuned from the ratio of the
driving period to the intrinsic period:Tdrive/Tintrinsic (cf. Figs.
7.37 and 7.45 in Ref.[12]). The intrinsic period can
be estimated by locating the nontrivial instantaneous fixed
points at sX,Yd=s±Îmf ,0d and carrying out a stability
analysis at these fixed points. A simple calculation
gives vintrinsic.Î2mf, so that Tdrive/Tintrinsic

.Îs2m /0.399de0
2p Î1+e cossfddf /2p.3.57.

The intrinsic solid torusR23S1 was embedded inR3 with
a preferred framing[16]. This was done using

X1std = fa + Xstdgcossvtd,

X2std = fa + Xstdgsinsvtd,

X3std = Ystd. s3d

In this embedding the real numbera must be chosen so that
a+Xstd.0 for all t. We chosea=0.5 and computed the link-
ing numbers of the three orbits. The linking numbers in this
embedding were computed by carrying out the Gauss linking
number integral numerically. The results are

Link 1 2 4

1 25 210

2 25 221

4 210 221

s4d

These are identical to the results obtained in the intrinsic
embedding inR23S1. We note here that the choiceX3std=
−Ystd instead of +Ystd simultaneously changes: the parity,
that is, the direction of folding from right-handed to left-
handed[12,13], the global torsion from −3 to +3, and the
signs of all linking numbers and relative rotation rates.

FIG. 5. Relative rotation rates for the period-one and period-two
orbits. The differenceX2std−X1std is projected onto theX-t plane
and the number of zero crossings is counted. The relative rotation
rate is half the number of zero crossings divided by the period(2).

FIG. 6. Projection of the differenceX2std−X1std onto theX-Ẋ
plane in the intrinsic solid torusR23S1. This difference rotates
around the origin five times in the clockwise direction. The linking
number is −5 and relative rotation rate is −5

2.
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IV. A FAMILY OF MAPPINGS

A standard procedure for constructing geometry from a
scalar time series involves time delay coordinates[1,2].
Other useful embedding procedures use differential coordi-
nates, Fourier-processed fractional derivatives and integrals,
and Hilbert transforms[12].

A three-dimensional time delay embedding can be ob-
tained from the mapping

Xsid → Xsid = fXsid,Xsi − t1d,Xsi − t2dg. s5d

It is customary to chooseti = it0, wheret0 is some fixed time
delay. If t0 is very small the embedding is equivalent, under
an affine transformation, to a differential embedding[11,12].

For their study of embeddings, Mindlin and Solari chose
t1 small and took the second coordinate to beX2sid=Xsid
−Xsi −kd, with k small sk.5d, so this coordinate is a surro-
gate for the time derivative ofX: X2std,dX/dt=Ystd. They
allowed the second delayt2=t to vary over a wide range of
values. The one-parameter family of embeddings they chose
to study was the discretized version of

Xstd → Xstd = FXstd,Ystd =
dXstd

dt
,Xst − tdG . s6d

This one-parameter family of mappings was used to map the
strange attractor intoR3. For some values oft this mapping
is not even 1-1(e.g.,t=0). For other values the mapping is
everywhere a local diffeomorphism but self-intersections oc-
cur in the image of the strange attractor. For yet other values
of t the mapping is a global diffeomorphism. In these three
cases we call the mapping an:

injection → immersion → embedding

Not 1-1 Locally 1-1 Globally 1-1.

The projection of the strange attractor generated by Eq.(1)
and mapped intoR3 under Eq.(6), onto theX-Y plane is
shown in Fig. 1. The projection is independent of the single-
delay parametert. The flow is clockwise.

TheX-Y projections of the period-one and period-two or-
bits are shown in Fig. 7. These orbits intersect the Poincaré
sectionf=const in the phase spaceR23S1 once and twice,
respectively. In projection, they can be interpreted either as
period-one and period-two orbits or as period-three and
period-six orbits. In fact, they were interpreted as period-
three and period-six orbits in Ref.[3]. A proper understand-
ing of these orbits is intrinsically tied to a precise description
of the Poincaré section for this dynamical system. The prin-
cipal difference between the present work and that of Ref.
[3] is in the choice of Poincaré section, leading to the inter-
pretation of these orbits as period-one and period-two orbits,
consistent with the dynamical interpretation of these orbits
and the number of intersections of these orbits with the stro-
boscopic section.

V. CHOICE OF POINCARÉ SECTION

We turn now to the proper choice of a Poincaré section for
this dynamical system. We first look at intersections of the

strange attractor with theX-Y plane. These intersections oc-
cur at Y=Ẋ=0 and depend on the embedding chosen—that
is, on the value of the delay parametert. We show intersec-
tions with this plane for three different values oft in Fig. 8.
For all values oft there are six intersections. They occur in
the order A1→A2→B1→B2→C1→C2→A1¯. At the
three intersectionsA1, B1, C1 to the left ofXfig=1 the flow
is into the plane, while atA2, B2, C2 to the right ofXfig
=1 it is out of the plane. We have chosenX,Y,Z to be a
right-handed coordinate system.

Following standard algorithms of the time, Mindlin and
Solari chose the half-planeY=0, X.1 as a Poincaré section.
The two orbits above intersect this half-plane three and six
times, leading to their interpretation as period-three and
period-six orbits. With this choice, the Poincaré section inR3

and the stroboscopic section in the original phase spaceR2

3S1 are inequivalent. Recently a more precise algorithm has
been developed for constructing the Poincaré section for cha-
otic flows inR3 [7,8]. Since the developments are so recent,
and this point is so important, we briefly review the argu-
ments here.

Strange attractors inR3 are described and classified by
branched manifolds. Branched manifolds in turn can be em-
bedded in three-dimensional manifolds whose bounding sur-
faces are two-dimensional, closed, bounded, and orientable.

FIG. 7. Period-one and -two orbits projected onto theX-Y plane.
They were obtained by finding surrogate periodic orbits, smoothing
in frequency space, and first differencing in the time domain.
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Such surfaces have been classified: they are tori of genusg,
g=0,1,2, . . .. Infact, branched manifolds can be bounded by
tori of genusg=1 orgù3 [7,8]. The torus with genusg=1 is

a donut. Its homotopy group has two generators: one longi-
tude and one meridian[16]. The meridian can be chosen to
bound a disk that lies entirely inside the region bounded by
the surface, and which is at all points transverse to the flow.
This disk is a Poincaré section for the flow.

In the casegù3 there areg longitudes andg meridians.
Each meridian bounds a disk that lies completely inside the
bounding torus and that is transverse to the flow. Of theseg
disks, g−1 provide information about the structure of the
flow. They can be taken asg−1 components of the Poincaré
section. The Poincaré section is the disjoint union ofg−1
disks, each bounded by a meridian in the homotopy group of
the genus-g torus[7,8]. For any branched manifold contained
in a bounding torus, at least two branches leave each disk
and at least two branches arrive at each disksg=1,gù3d.

As with branched manifolds, the flow between the com-
ponents of the Poincaré section is summarized by a transition
matrix. This is asg−1d3 sg−1d matrix sgù3d. The structure
of bounding tori places severe constraints on the transition
matrix. Initial conditions on any component can flow to only
two other components. In other words, the outset from any
component flows to exactly two other components. Similarly,
the inset to any components arrives from exactly two other
components[7,8]. As a result, forgù3, the transition matrix
for flows between components of the Poincaré section has
two entries +1 in each row and in each column.

We now apply this algorithm to choose a Poincaré section
for the flow studied in Ref.[3]. In any embedding the flow
can be embedded in a bounding torus. The intersection of
this bounding torus with the half-planeY=0,X.1 (Fig. 8)
consists of three disks surroundingA2,B2,C2. The transi-
tion matrix for these disks, under the flow, is a cyclic 333
matrix, with one entry 1 in each row and each column. As a
result, the bounding torus has genusg=1. As a result, the
Poincaré section consists of a single disk transverse to the
flow. The disk surroundingA2 or B2 or C2 can be taken as
the Poincaré section. Since a global Poincaré section exists,
there is no problem about constructing braids. In fact, every
choice of Poincaré section(i.e., a disk surrounding any one
of the six intersections shown in Fig. 8) leads to the same set
of braids for any fixed value oft that provides an embed-
ding.

The set of unstable periodic orbits in a strange attractor is
independent of the embedding. This point was forcefully
made in Refs.[11,12], where it was pointed out that such
orbits can be identified by a close return analysis on scalar
time seriesbefore an embedding is made. As a result, the
strange attractor embedded in the natural phase spaceR2

3S1, in the preferred framing ofR23S1 in R3, and the at-
tractors obtained from the map(6) with values of t that
provide embeddings, all have the same spectrum of unstable
periodic orbits. For each embedding the spectrum can be
described by a finite braid by restricting to a basis set of
orbits up to some finite period.

How are the braids in the phase spaceR23S1, the pre-
ferred framing inR3, and embeddings inR3 under the one-
parameter family(6) related to each other?

FIG. 8. Intersections of the strange attractor generated by Eq.

(1) with the planeẊ=0 under the embedding Eq.(6). The intersec-
tions occur in the orderA1→A2→B1→B2→C1→C2→A1. The
flow at A1, B1, andC1 is into the plane while the flow atA2, B2,
andC2 is out of the plane.(a) t=225/1024T, (b) t=425/1024T, (c)
t=−225/1024T.
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VI. EXTRINSIC EMBEDDINGS

Mindlin and Solari found two ranges oft values at which
embeddings existed. They were separated by a range oft
values at which self-intersections occurred. The self-
intersections reduced the image of the attractor inR3 to an
immersion(at best) or possibly an injection.

This transition from one range oft values that provide an
embedding to a second range that provide a different embed-
ding can be inferred from Figs. 8(a) and 8(b). In each case
the intersections of the image with theY=0 plane are well-
separated. This does not mean that the correspondingt val-
ues provide an embedding—only that they might. Ast
changes continuously from225/ 1024T [Fig. 8(a)] to 425/ 1024T
[Fig. 8(b)] the intersectionsB2 and C2 pass through each
other. For some intermediate range oft values the image
attractor must undergo self-intersections. For this range oft
values the mapping is at best an immersion.

The topological structure of the embedded strange attrac-
tors for t= 225/ 1024T [Fig. 8(a)] and t= 425/ 1024T [Fig. 8(b)]
were determined by computing linking numbers of some
low-period orbits. We found that fort= 225/ 1024T the embed-
ded attractor was generated by a right-handed Smale horse-
shoe mechanism with global torsion −1. Fort= 425/ 1024T the
embedded attractor was generated by a left-handed Smale
horseshoe mechanism with global torsion +1. The table of
linking numbers for one embedding was the negative of the
table, for the same orbits, in the other embedding.

We also studied the one-parameter family of mappings for
t,0, that is, we studied time advance embeddings, with
similar results. Fort=−525/ 1024T the intersection was quali-
tatively the same as shown in Fig. 8(b). The intersection for
t=−225/ 1024T is shown in Fig. 8(c). In passing from
−525/ 1024T to −225/ 1024T the intersections labeledA1 andB1
exchange places. For an intermediate range oft values the
time advance mapping exhibits self-intersections and cannot
be an embedding.

The change in global torsion, from −1 to +1, can be un-
derstood as shown in Fig. 9. In one case the flow spirals up
[B2→C1→C2 in Fig. 8(a)], while in the other case the flow
spirals down[B2→C1→C2 in Fig. 8(b)]. As the torus that
cycles three times around is unwound to a torus that cycles
only once, a global torsion of ±1 is introduced, depending on
the direction of the spiral. This is equivalent to the exchange
of writhe for twist in ribbons.

The change from right-handed to left-handed folding to
generate a horseshoe occurs as the immersion degenerates to
an injection. On either side of this degeneracy folding occurs
in a different direction. That the parity can change in a one-
parameter family of mappings is easily seen from the embed-
dings given byxstd→ fxstd ,xstd+aẋstd , ẍstdg. For a=0 the
map is an injection, while embeddings of opposite parity are
obtained fora large and positive and negative.

VII. THE SELF-INTERSECTION PROBLEM

It is not an easy problem to identify parameter values at
which self-intersections of the immersed attractor occur. This
problem was carefully treated by Mindlin and Solari[3]. It is
possible to provide a less complete answer to this question
by studying a simplified problem. The idea is to embed the
strange attractor in a torus and look for self-intersections of
the torus. If the torus has no self-intersections the attractor it
contains certainly has no self-intersections. However, the
converse is not true: the torus may have self-intersections
while the strange attractor has none.

The problem can be simplified even further by using the
period-one orbit in the attractor as a guiding curve for the
torus. It is then a simple matter to search for self-
intersections of this curve. Generically, a closed curve
mapped intoR3 has no self-intersections. However, we are
looking for self-intersections in a one-parameterfamily of
circles mapped intoR3, and these generically occur in zero-
dimensional sets(isolated points). When the guiding curve
has self-intersections, the torus surrounding it has self-
intersections and the strange attractor in which this curve is
embedded also has self-intersections. Values oft at which
self-intersections occur are surrounded by open sets in which
the map(6) is not an embedding. Once again this simple
search does not completely answer the self-intersection ques-
tion: we cannot show that if self-intersections of the guiding
period-one orbit occur att1 and att3 st1,t3d there is some
intermediate valuet2,t1,t2,t3, that provides an embed-
ding for the strange attractor.

To locate self-intersections of the period-one orbit in the
strange attractor, we show itsX-Y projection in Fig. 10. In
this projection there are four self-intersections, labeleda, b,
c, d in the order in which they are encountered following the
trajectory starting at the arrow. At each intersection we show
the tangent vectors to the two segments that cross. The usual
convention is adopted: the crossing is positive if the upper
tangent(largerZ value) can be rotated into the lower tangent
vector using the right hand. At each of the four pointsa, b, c,
d we computed the height differencesDZd in such a way that
if the difference is positive the crossing is right handed, and
therefore positive. This was done for all values of the delay
t. Since the guiding curve is a period-one orbit, only delays
up to one forcing period need be considered. Since fast
Fourier-transtorm processing was used, a delay of 1024
=210 corresponds toT. The results are shown for the four
pointsa, b, c, d in Fig. 11. This figure shows, for example,
that at a delayt= 1

2T the crossings ata, b, andd are positive
while that atc is negative. In addition to the four zero cross-

FIG. 9. When the ribbon with writhe but no twist is stretched,
twist is induced. The direction of the twist depends on the coil of
the ribbon.
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ings that can occur for the injection att=0 there are 12
isolated zero crossings for nonzero values of the delay.

Only one knot has four crossings in projection: this is the
figure-8 knot. Therefore any of the embeddings of the
period-one orbit intoR3 is either unknotted or equivalent to
the figure-8 knot. Of 24 possible embeddings suggested by
Figs. 10, 12 are unknotted and four are knotted. The embed-
dings knotted like the figure-8 knot have crossings at
sa,b,c,dd given by s+, + , + , +d, s−,−,−,−d, s+,−,−, +d,
and s−, + , + ,−d. The succession of crossings, starting at the
arrow areuuoouuoo, oouuoouu, uouououo, andouououou
(resp.), whereo is an overcrossing andu is an undercrossing.
From Fig. 11 we can see that there is no value oft for which
the embedding of the period-one orbit inR3 is knotted.

We conclude from Figs. 9–11 that several different values
of t provide embeddings of the strange attractor inR23S1

into R3. These values are separated by values oft for which
the immersed attractor has self-intersections. When an em-
bedding exists, the period-one orbit in the flow is unknotted.
The solid torus for which it is the guiding knot is also un-
knotted. However, the solid torus is three dimensional while

the period-one orbit is one dimensional. Although different
embeddings of an unknot inR3 can be isotoped to each other,
the same is not true of the three-dimensional tori surrounding
these unknots, as can be seen in Fig. 9(left-hand side).

The embeddings of a strange attractor that we have stud-
ied all describe a Smale horseshoe mechanism for generating
chaos. The embeddings differ from each other in handedness
(parity) and global torsion. There is also the possibility, not
realized in the class of embeddings studied here and in Ref.
[3], that the knot type of the bounding torus containing the
strange attractor can change as the parameter values change.
The topological properties of a strange attractor are in part
embedding dependent. We believe that the only ways embed-
dings can differ from each other, and from the underlying
dynamics, are the handedness of the folding, the global tor-
sion, and the knot type of the period-one orbit. We believe
embeddings preserve mechanism—that is, the template ma-
trices and layering information, up to sign and global torsion.

VIII. SUMMARY AND CONCLUSIONS

The purpose of Ref.[3] was to raise a red flag on the
black-box-like application of topological tools to analyze
data. In particular, the usual standard choice for a Poincaré
section—a half-plane—lead to subtleties in the construction
and interpretation of braids. Mindlin and Solari traced these
difficulties to nonoverlapping intersections of the embedded
strange attractor with the half-plane chosen as the Poincaré
section. They also pointed out that the topological structure
of a chaotic flow is embedding dependent. With their choice
of Poincaré section they identified an orbit of period three
that had zero topological entropy in one embedding and posi-
tive topological entropy in another. This violates a basic
theorem: topological entropy is embedding independent[6].

The purpose of the present work is to show that the topo-
logical analysis of strange attractors is robust against changes
in the embedding. Key to this robustness is the proper choice
of a global Poincaré section. This is possible due to recent
advances in our understanding of the structure of chaos in
low dimensions[7,8]. Specifically, we applied the algorithm
for constructing a global Poincaré section to the embeddings
described above. We find that the orbit identified in Ref.[3]
as a period-three orbit is actually the period-one node of the
standard Smale horseshoe. There is no difference between
the Poincaré section we construct for embeddings inR3 and
the constant phase planef=const in the original phase space
R23S1. With this proper choice of Poincaré section, all
braids are well defined and similar from one embedding to
another. They differ from each other in a limited number of
ways. Specifically, their organization is identical up to mirror
image(handedness, or parity), global torsion, and knot type
of the embedding inR3, although all embeddings studied in
this work turn out to be unknotted. We believe that embed-
dings of strange attractors inR3 can differ from each other in
only these three ways.

FIG. 10. Tangent vectors are drawn to the segments at each of
the four crossing points, reached in the ordera, b, c, d starting from
the arrow.

FIG. 11. Vertical distance between the orbit segments at the four
points a, b, c, d. These are points of apparent self-inter-

section when projected to theX,Ẋ plane. Real self-intersections
occur inR3 when the vertical offset is zero.
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We believe our findings in the present work are general:
the topological structure of a chaotic flow is embedding de-
pendent(by parity, global torsion, knot, or braid type), but
the mechanism that generates chaotic behavior(horseshoe in
the present case) is the same in every embedding; it is an
embedding invariant. Work to verify this assertion is cur-
rently under way.
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