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Embeddings of a strange attractor into R®
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The algorithm for determining a global Poincaré section is applied to a previously studied dynamical system
onR?x S and a one-parameter family of embeddings of the strange attractor it generatéd e find that
the topological properties of the attractor are embedding dependent to a limited extent. These embeddings
rigidly preserve mechanism, which is a simple stretch and fold. The embeddings studied show three discrete
topological degrees of freedom: parity, global torsion, and braid type of the genus-one torus bounding the
embedded attractor.
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I. INTRODUCTION This work is organized as follows. In Sec. Il we introduce

Embeddings are the primary tool used by experimentalist1® dynamical system used for this and the previous study of
to study scalar time series generated by chaotic dynamic&mbeddings. We show that chaos is generated by a simple
systems. A number of embedding theorems guarantee th&@male horseshoestretch and folgl mechanism. In Sec. Il
data generated by andimensional dynamical system can be We describe the topological properties of this attractor in the
used to recreate the dynamics of that system in a space oftural phase space, which is the solid toRfs< S'. These
sufficiently high dimensiori1,2]. However, these theorems properties are unchanged under the preferred embedding of
are silent on a number of points—in particular, on how theR®x S* in R3. The one-parameter family of embeddings into
geometry of an attractor depends on the embedding. IR® that was studied in Ref3] is introduced in Sec. IV. In

In order to address this question, Mindlin and Solari studSec. V we apply the algorithm for choosing a global
ied a one-parameter family of mappings ifité [3]. In par-  Poincaré sectiofi7,8 and discuss how this is related to in-

ticular, they mapped chaotic scalar time series generated bytarsections of the embedded attractor with the plXmeD.
dynamical system that had been found to represent a fluigroper choice of the global Poincaré section positively re-
experiment fairly accuratelf4,5]. They found two ranges of splves the braid problem. In Sec. VI we describe extrinsic
parameter values in which embeddings existed, separated lynbeddings obtained with three different choices of the de-
a range of parameter values at which self-intersections ogay parameter. Between parameter values at which embed-
curred. They reached two conclusions that might create prolitings occur are values at which self-intersections occur. An
lems for the applications of topological analyses to data. Thelgorithm for determining self-intersections is presented in
first is that applying the traditional algorithm for choosing a Sec. VII. In this section we also describe how the extrinsic
Poincaré section creates subtleties in constructing and undeppology of the embedding changes on passing through self-
standing braids in the attractor. This presents a problem bentersections. We summarize our findings in the closing sec-
cause chaotic data sets have been identified principally byjon. These findings arél) there is an algorithm for con-
the braids(unstable periodic orbits and their linkthat they  structing the components of a Poincaré section for any
contain. The second is that the topological properties of @mbedding. When applied, construction of braids is algorith-
strange attractor are not invariant under embeddings. In pamic. (2) The topological properties of the strange attractor
ticular, they found that the same orbit, in two different em-can vary from one embedding to another. However, the only
beddings, appeared to have different topological entropiesyays they can differ in the class of embeddings studied are
This presents a problem because topological entropy is emhe handedness of the folding, the global torsion, and the

bedding independeri]. braid type of the period-one orbit guiding the bounding
Recent advances in our understanding of the structure Qprys.

chaos in three dimensior§,8] enable us to return to the
problem and provide a more positive answer to the embed-

ding question. There is now an algorithm for properly con- Il. DYNAMICAL SYSTEM AND PHASE SPACE
structing all the components of a Poincaré section in any
dissipative dynamical system with Lyapunov dimension
d. <3 [7,8]. With such a choice, constructing and interpret-

The equations used in R€f3] as a vehicle to study the
properties of embeddings are

ing braids is algorithmic. We also find, in agreement with X=Y

Mindlin and Solari, that the topological structure is not em- : '

bedding independent. However, we find that there are only Y = pf(@)X+ vf(g)Y = X+ X3V,

three degrees of freedom that are available to change the ¢:w, (1)

topological structure of a strange attractor with embedding:
parity, global torsion, and braid type of the torus boundingwheref(#)=[1+e cog¢)]. This set of equations describes a
the embedded attractor. periodically forced Takens-Bogdanov scenario. They have
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'FIG. 1. A strange attractor generated by Eb.is plotted in the FIG. 3. Return map for the stroboscopic sectiig. 2) onto

X,X plane. Another attractor is obtained from a change in initialjtse|f. The parametes is related to the arc length along the inter-
conditions: (X,Y)— (=X,-Y). Parameter valuegt=1.0434, v= section of the attractor with the plark=0.
-1.0,€=0.45, andw=0.399.

) _the intersection shown in Fig. 2. The return map shows that
been used successfully to model the behavior of a fluidnhe strange attractor is described by a branched manifold
heated frqm below4]. As a result, we treat_ the time series \yith two brancheg9-12. Unstable orbits of periods 1, 2, 4,
X(t), or X(i), the way we would treat experimental data.  gnq 5 were located by the method of close returns on the

Equations(1) were |_ntegrated3W|th a stzla(mdard RK4 inte- scalar time serieX(t), and by the method of close returns on
grator with time step size&t=10""T andT/2% k=10, where ¢ jntersection shown in Fig. 2. These orbits were used for
T is the period of the external forcing,=27/w. The equa-  gngjogical analyses. The period-one and period-two orbits

tions were studied at control parameter valyes1.0434, 5.6 shown in Fig. 4. This figure shows thé) value along
v=-1.0,€=0.45, andw=0.399. For these values of the con- {ase two orbits for two full driving periods.

trol parameters the syste(i) generates two disconnected
strange attractors. Only one of these is shown inXkheYy
projection in Fig. 1. The other strange attractor is obtained by ~ Ill. INTRINSIC STRUCTURE AND PREFERRED
inversion (X,Y)— (=X,=Y). For slightly larger valuey= EMBEDDINGS

-0.9u, there is a symmetry-restoring bifurcation leading to a

strange attractor with inversion symmety,Y)— (=X, =Y). The phase space for the dynamical systdmis the in-

trinsic solid torusR2x S. The structure of the attractor in

H : 2y Q1
The prt;ase space for the dynamical sysg&pnshR X5% " this phase space was determined by computing the relative
Any stroboscopic sectiogp=constant can be chosen as a,qaiion rateg12,13 of the period-one, -two, and -four or-

Poincaré section in this phase space. The intersection of tgq eyiracted from the data. For the period-one and period-
strange attractor with the sectigh=0 is shown in Fig. 2. A yyq orjts this topological index can be determined by count-

first return map of this section to itself was constructed and '?ng crossings in Fig. 4. For the embedding shown, with

shown in Fig. 3. The coordinate used to construct this return :

map is the arc length measured along an approximation g X out of the plane, all crossings are left handed. There are

ten (negative crossings, so the linking number is =5 and the
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FIG. 2. Intersection of the strange attractor with a stroboscopic
section(Poincaré sectionat ¢=0.0. FIG. 4. Period-one and period-two orbits in thet plane.
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06 ' ' ' ' torsion of —=3[12,13. The right- and left-handed Smale
I 1 horseshoe templates are described by the template and lay-
041~ ] ering matrice§12]

/\ Template matrix [0 0]

AN | o [ 9]
V W \/ \/ \/ Layering matrix [0 -1] [0 1]

_ Right-handed Left-handed

<
S}

=)

X2(t) - X1(t)

DX =

These two branched manifolds are mirror images of each
other. Linking numbergand relative rotation ratg¢sof all
orbit pairs in the right-handed Smale horseshoe with zero
0 : o5 : 0 : 5 : 2 global torsion are positive or zero. Linking numbers of cor-
Time, periods responding orbits in the left-handed Smale horseshoe are

FIG. 5. Relative rotation rates for the period-one and period-twoneQa‘tM_js of those in the right-handed Smale horseshoe. The

orbits. The differenceX,(t)—X,(t) is projected onto thé-t plane topological organization of all orbits in the right-handed

and the number of zero crossings is counted. The relative rotatioF?r"’mChed manifold is t,he mirror |m§ge O,f those in th? left-
rate is half the number of zero crossings divided by the peizpd ~ N@nded branched manifold. The orbit forcing orflist, 13 in
the horseshoe is independent of the handedness and the glo-
bal torsion.

The global torsion -3 is compatible with estimates based
. : on reasonable physical approximations. In driven systems
XZ(t)_X.l(t) onto elthgr thex-t plqne(ﬁg.. 5 or the X-¥ the global torsion is slightly detuned from the ratio of the
plane (Fig. 6). In the f_|rst case it is sufficient to count the driving period to the intrinsic periodyi,e/ Tiyinsic (Cf. Figs.
number of zero crossings. In the second case we count t 37 and 7.45 in Ref[12]). The intrinsic period can

nurprt])er olf ttl_mes tth|t§ d|ﬁe:encfe r(t)r'[]at?s ?rt%und thgf”.gmth be estimated by locating the nontrivial instantaneous fixed
e relative rotation rates for the first three orbits in epoints at (X,Y)=(+vuf,0) and carrying out a stability

period-doubling cascade are analysis at these fixed points. A simple calculation

04

average number of rotations per period is -5/2.
The computation is simpler if we project the difference

RRR 1 2 4 gives Wintrinsic = V2uf, SO that  Tarive/ Tintrinsic
=/(2u/0.399 [3™ \/1+€ cos p)dep/2m=3.57.
1 -3 1/2 1/2 The intrinsic solid toru®i2 x S was embedded i3 with
2 1/2 1/2,1/4  a preferred framing16]. This was done using
4 1/2 1/2.1/4 X,(t) = [+ X(0 cos(ot),
2 Xo(t) = [a+ X(t)sin(wt),
2
This shows that generation of chaos is due to a right-
handed Smale horseshoe mechanism together with a global X3(t) = Y(b). (3)

In this embedding the real numbamust be chosen so that
a+X(t)>0 for all t. We chosea=0.5 and computed the link-
ing numbers of the three orbits. The linking numbers in this
embedding were computed by carrying out the Gauss linking
number integral numerically. The results are

0.6 . . : . . T

0.4 -

02 —

Link 1 2 4

DY
=)
T
|

L _ 1 -5 -10
02} - 2 -5 =21
4 —-10 =21

(4)

s 02 o 02 o4 06 These are identical to the results obtained in the intrinsic
embedding ink?x St. We note here that the choicg(t)=

FIG. 6. Projection of the differenck,(t)-X,(t) onto thex-x ~ —Y(t) instead of ¥(t) simultaneously changes: the parity,
plane in the intrinsic solid toru®2x SL. This difference rotates that is, the direction of folding from right-handed to left-
around the origin five times in the clockwise direction. The linking handed[12,13, the global torsion from -3 to +3, and the
number is -5 and relative rotation rate i§.- signs of all linking numbers and relative rotation rates.
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IV. A FAMILY OF MAPPINGS OS— 7T T 17 T * T ~ T * T "~ T 7

A standard procedure for constructing geometry from a o5
scalar time series involves time delay coordinafgés?]. L .
Other useful embedding procedures use differential coordi- o2s- .
nates, Fourier-processed fractional derivatives and integrals - 1

and Hilbert transform$§12]. % o -
A three-dimensional time delay embedding can be ob-5 ]
tained from the mapping m-025- .
X(i) — X(i) =[X(0),X(i = 7),X(i = m)]. (5 051 .

It is customary to choose =i, wherer, is some fixed time 075 I
delay. If 7g is very small the embedding is equivalent, under

an affine transformation, to a differential embeddjtd,12. gl

For their study of embeddings, Mindlin and Solari chose ? 02 04 05 081 2o 1s 18
7; small and took the second coordinate to Xgi)=X(i) B —
—X(i—k), with k small (k=5), so this coordinate is a surro- L i
gate for the time derivative oX: X,(t) ~dX/dt=Y(t). They o5 .

allowed the second delay =7 to vary over a wide range of
values. The one-parameter family of embeddings they chost 025 7
to study was the discretized version of i ]

dX(t)

X(t) — X(t) = | X(1),Y() = F,X(t -7. (6)

Y =dX/dt

025 -

This one-parameter family of mappings was used to map the -os

strange attractor int&3. For some values of this mapping - 1
is not even 1-1e.g., 7=0). For other values the mapping is 075 —
everywhere a local diffeomorphism but self-intersections oc- - ]

cur in the image of the strange attractor. For yet other values  “lo"02 "0z o5 08 1 12 14 16 18
of 7the mapping is a global diffeomorphism. In these three X
cases we call the mapping an: FIG. 7. Period-one and -two orbits projected ontoXa¥ plane.

They were obtained by finding surrogate periodic orbits, smoothing

injection immersion embeddin
) - - 9 in frequency space, and first differencing in the time domain.

Not 1-1 Locally 1-1 Globally 1-1.
strange attractor with th¥-Y plane. These intersections oc-

cur atY=X=0 and depend on the embedding chosen—that
is, on the value of the delay parameteWe show intersec-

The projection of the strange attractor generated by(lEq.
and mapped intdi® under Eq.(6), onto theX-Y plane is

shown in Fig. 1. The projection is independent of the Single'tions with this plane for three different values ofn Fig. 8.

delay parameter. The flow is clo_ckwise. . For all values ofr there are six intersections. They occur in
The X-Y projections of the period-one and period-two or- the order Al—A2—B1—B2—C1—C2—Al--. At the

bits are shown in Fig. 7. These orbits intersect the Poincarg, o intersectional. B1. C1 to the left ofX[i]=1 the flow
sectiong=const in the phase spa& x S! once and twice, is into the plane, while aA2, B2, C2 to the right ofX(i]

respectively. In projection, they can be interpreted either S 1 it is out of the plane. We have chosdyY,Z to be a
period-one and period-two orbits or as period-three an?ight-handed coordinate system.

Fheggd's'g Oéb.gz In Lagt.'t thﬁ)gwereAmtzrpereter(]i dgs tper(‘;od- Following standard algorithms of the time, Mindlin and
ree and period-six orbits in Ref3]. A proper understand- Solari chose the half-plané=0, X>1 as a Poincaré section.

ing of these orbits is intrinsically tied to a precise description.l.he two orbits above intersect this half-plane three and six

of the Poincaré section for this dynamical system. The pr'n'times, leading to their interpretation as period-three and

cipal difference between the present work and that of REfperiod-six orbits. With this choice, the Poincaré sectioRn

3121 the heice of Poicaré seclon, eacing 1o\ it and the sroboscopi ecton n ihe original phise spice
P P P st are inequivalent. Recently a more precise algorithm has

consistent with the dynamical interpretation of these orbitsoeen developed for constructing the Poincaré section for cha-

and thg numbgr of intersections of these orbits with the Stro()tic flows in R® [7,8]. Since the developments are so recent,
boscopic section.

and this point is so important, we briefly review the argu-
ments here.
V. CHOICE OF POINCARE SECTION Strange attractors i3 are descr!bed a}nd classified by
branched manifolds. Branched manifolds in turn can be em-
We turn now to the proper choice of a Poincaré section fobedded in three-dimensional manifolds whose bounding sur-
this dynamical system. We first look at intersections of thefaces are two-dimensional, closed, bounded, and orientable.
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a donut. Its homotopy group has two generators: one longi-
tude and one meridiafiL6]. The meridian can be chosen to
bound a disk that lies entirely inside the region bounded by
the surface, and which is at all points transverse to the flow.
This disk is a Poincaré section for the flow.

In the caseg= 3 there argy longitudes andy meridians.
Each meridian bounds a disk that lies completely inside the
bounding torus and that is transverse to the flow. Of tlgese
disks, g—1 provide information about the structure of the
flow. They can be taken ag-1 components of the Poincaré
section. The Poincaré section is the disjoint uniongefl
disks, each bounded by a meridian in the homotopy group of
the genugy torus[7,8]. For any branched manifold contained
in a bounding torus, at least two branches leave each disk
and at least two branches arrive at each digkl,9=3).

As with branched manifolds, the flow between the com-
ponents of the Poincaré section is summarized by a transition
matrix. This is a(g—1) X (g—1) matrix (g=3). The structure
of bounding tori places severe constraints on the transition
matrix. Initial conditions on any component can flow to only
two other components. In other words, the outset from any
component flows to exactly two other components. Similarly,
the inset to any components arrives from exactly two other
component$7,8]. As a result, fog= 3, the transition matrix
for flows between components of the Poincaré section has
two entries +1 in each row and in each column.

We now apply this algorithm to choose a Poincaré section
for the flow studied in Ref[3]. In any embedding the flow
can be embedded in a bounding torus. The intersection of
this bounding torus with the half-plané=0,X>1 (Fig. 8
consists of three disks surroundid®,B2,C2. The transi-
tion matrix for these disks, under the flow, is a cyclix 3
matrix, with one entry 1 in each row and each column. As a
result, the bounding torus has gemgs1. As a result, the
Poincaré section consists of a single disk transverse to the
flow. The disk surroundind\2 or B2 or C2 can be taken as
the Poincaré section. Since a global Poincaré section exists,
there is no problem about constructing braids. In fact, every
choice of Poincaré sectiggie., a disk surrounding any one
of the six intersections shown in Fig) Bads to the same set
of braids for any fixed value of that provides an embed-
ding.

The set of unstable periodic orbits in a strange attractor is
independent of the embedding. This point was forcefully
made in Refs[11,13, where it was pointed out that such
orbits can be identified by a close return analysis on scalar
time seriesbefore an embedding is madas a result, the

FIG. 8. Intersections of the strange attractor generated by Ecstrange attractor embedded in the natural phase sface

7=-225/102%.

Such surfaces have been classified: they are tori of ggnus
g=0,1,2,.... Infact, branched manifolds can be bounded byferred framing inR3, and embeddings ift® under the one-
tori of genusg=1 org=3[7,8]. The torus with genug=1 is

(1) with the planeX=0 under the embedding E(). The intersec-
tions occur in the ordeAl— A2—B1—B2—C1—C2—ALl. The
flow at A1, B1, andC1 is into the plane while the flow &2, B2,
andCz2 is out of the planela) 7=225/1024, (b) 7=425/1024, (c)

x S, in the preferred framing oR2x St in R3, and the at-
tractors obtained from the maf®) with values of = that
provide embeddings, all have the same spectrum of unstable
periodic orbits. For each embedding the spectrum can be
described by a finite braid by restricting to a basis set of
orbits up to some finite period.

How are the braids in the phase spdtex S, the pre-

parameter family6) related to each other?

056215-5
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%M:i The change from right-handed to left-handed folding to

— J - S generate a horseshoe occurs as the immersion degenerates to
L —: e an injection. On either side of this degeneracy folding occurs
in a different direction. That the parity can change in a one-
parameter family of mappings is easily seen from the embed-
dings given byx(t)—[x(t),x(t) +ax(t),X(t)]. For a=0 the
map is an injection, while embeddings of opposite parity are

o—_ o ey obtained fora large and positive and negative.
S e
_FI_G. _9. When the ri_bbor_1 with writhe .but no twist is stretch_ed, VIl. THE SELF-INTERSECTION PROBLEM
twist is induced. The direction of the twist depends on the coil of
the ribbon. It is not an easy problem to identify parameter values at

which self-intersections of the immersed attractor occur. This
problem was carefully treated by Mindlin and Solg8]. It is
VI. EXTRINSIC EMBEDDINGS possible to provide a less complete answer to this question

Mindlin and Solari found two ranges ofvalues at which by studying a simplified problem. The idea is to embed the
embeddings existed. They were separated by a range ofStrange attractor in a torus and look for self-intersections of
values at which self-intersections occurred. The selfthe torus. If the torus has no self-intersections the attractor it

intersections reduced the image of the attractoRfrto an contains certainly has no self-intersections. However, the
immersion(at best or possibly an injection. converse is not true: the torus may have self-intersections
This transition from one range ofvalues that provide an While the strange attractor has none. _
embedding to a second range that provide a different embed- The problem can be simplified even further by using the
ding can be inferred from Figs(& and 8b). In each case Period-one orbit in the attractor as a guiding curve for the
the intersections of the image with the=0 plane are well- forus. It is then a simple matter to search for self-
separated. This does not mean that the correspondig-  Intersections of this curve. Generically, a closed curve
ues provide an embedding—only that they might. As Mapped intoR® has no self-intersections. However, we are
changes continuously fromes/1024T [Fig. 8@)] to 425/1024T  100king for self—!ntersectlons in a one-parametamily of
[Fig. 8b)] the intersectiond32 and C2 pass through each Ccircles mapped inté”, and these generically occur in zero-
other. For some intermediate range okalues the image dimensional setgisolated points When the guiding curve
attractor must undergo self-intersections. For this range of has self-intersections, the torus surrounding it has self-
values the mapping is at best an immersion. intersections and the strange attractor in which this curve is

The topological structure of the embedded strange attra@mbedded also has self-intersections. Values af which
tors for 7= 225/1024T [Fig. §@a)] and 7= a2s/1024T [Fig. &b)] self-intersections occur are surrounded by open sets in which
were determined by computing linking numbers of somethe map(6) is not an embedding. Once again this simple
low-period orbits. We found that for= 225/ 1024T the embed- search does not completely answer the self-intersection ques-
ded attractor was generated by a right-handed Smale hors#on: we cannot show that if self-intersections of the guiding
shoe mechanism with global torsion —1. Ferazs/1024T the  Period-one orbit occur at; and atr; (7, < 75) there is some
embedded attractor was generated by a left-handed SmadRtermediate valuer,, 7, <7,< 73, that provides an embed-
horseshoe mechanism with global torsion +1. The table ofling for the strange attractor.
linking numbers for one embedding was the negative of the To locate self-intersections of the period-one orbit in the
table, for the same orbits, in the other embedding. strange attractor, we show i¥%Y projection in Fig. 10. In

We also studied the one-parameter family of mappings fothis projection there are four self-intersections, labeled,
<0, that is, we studied time advance embeddings, wittf, d in the order in which they are encountered following the
similar results. Forr=-s25/1024T the intersection was quali- trajectory starting at the arrow. At each intersection we show
tatively the same as shown in Figlbg The intersection for the tangent vectors to the two segments that cross. The usual
r=—225/1024T is shown in Fig. &). In passing from convention is adopted: the crossing is positive if the upper
—s525/1024T 10 —225/1024T the intersections labeledll andB1 ~ tangent(largerZ value) can be rotated into the lower tangent
exchange places. For an intermediate range wélues the Vector using the right hand. At each of the four poiat$, c,
time advance mapping exhibits self-intersections and cannétwe computed the height differen¢aZ) in such a way that
be an embedding. if the difference is positive the crossing is right handed, and

The change in global torsion, from -1 to +1, can be un-therefore positive. This was done for all values of the delay
derstood as shown in Fig. 9. In one case the flow spirals up- Since the guiding curve is a period-one orbit, only delays
[B2— C1— C2 in Fig. §a)], while in the other case the flow up to one forcing period need be considered. Since fast
spirals down[B2— C1—C2 in Fig. 8b)]. As the torus that Fourier-transtorm processing was used, a delay of 1024
cycles three times around is unwound to a torus that cycles2'° corresponds tdl. The results are shown for the four
only once, a global torsion of +1 is introduced, depending orpointsa, b, ¢, d in Fig. 11. This figure shows, for example,
the direction of the spiral. This is equivalent to the exchangdhat at a delay-= %T the crossings &, b, andd are positive
of writhe for twist in ribbons. while that atc is negative. In addition to the four zero cross-
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OB ' ' ‘ ' S B the period-one orbit is one dimensional. Although different
| | embeddings of an unknot iR® can be isotoped to each other,
| the same is not true of the three-dimensional tori surrounding
i these unknots, as can be seen in Figle®t-hand sidg
The embeddings of a strange attractor that we have stud-
- ied all describe a Smale horseshoe mechanism for generating
1 chaos. The embeddings differ from each other in handedness
(parity) and global torsion. There is also the possibility, not
realized in the class of embeddings studied here and in Ref.
1 [3], that the knot type of the bounding torus containing the
- strange attractor can change as the parameter values change.
The topological properties of a strange attractor are in part
T "0z 04 06 08 . 1 12 14 16 18 embedding dependent. We believe that the only ways embed-
dings can differ from each other, and from the underlying
FIG. 10. Tangent vectors are drawn to the segments at each éfynamics, are the handedness of the folding, the global tor-
the four crossing points, reached in the ordgh, c, d starting from  sion, and the knot type of the period-one orbit. We believe
the arrow. embeddings preserve mechanism—that is, the template ma-
trices and layering information, up to sign and global torsion.

05—

0.25—

Y =dX/dt

-0.25—

-0.75—

ings that can occur for the injection at=0 there are 12
isolated zero crossings for nonzero values of the delay.
Only one knot has four crossings in projection: this is the
figure-8 knot. Therefore any of the embeddings of the
period-one orbit intd?? is either unknotted or equivalent to
the figure-8 knot. Of 2 possible embeddings suggested by
Figs. 10, 12 are unknotted and four are knotted. The embed- )
dings knotted like the figure-8 knot have crossings at The purpose of Ref{3] was to raise a red flag on the
(a,b,c,d) given by (+,+,+,4), (=,—,—,9), (+,—,—,+), black-box—llkg application of topological tpols to ana]yze
and (-, +, +,-). The succession of crossings, starting at thedata. In particular, the usual standard choice for a Poincaré
arrow areuuoouuo 0ouUoOUY Uouououo andouououou  S€ction—a half_-plane—l_ead to suk_)tletles in th_e construction
(resp), whereo is an overcrossing andis an undercrossing. and interpretation of braids. Mindlin and Solari traced these

From Fig. 11 we can see that there is no value fadr which difficulties to nonoverlapping intersections of the embedded
the embedding of the period-one orbitli is knotted. strange attractor with the half-plane chosen as the Poincare

We conclude from Figs. 9-11 that several different valuesSection. They also pointed out that the topological structure
of 7 provide embeddings of the strange attractofix St of a chaotic flow is embedding dependent. With their choice

into R3. These values are separated by values fof which of Poincaré section they identified an orbit of period three
the immersed attractor has self-intersections. When an enifat had zero topological entropy in one embedding and posi-
bedding exists, the period-one orbit in the flow is unknotted iV topological entropy in another. This violates a basic
The solid torus for which it is the guiding knot is also un- theorem: topological entropy is embedding independent

knotted. However, the solid torus is three dimensional while 1he purpose of the present work is to show that the topo-
logical analysis of strange attractors is robust against changes

15— , T - — T - - in the embedding. Key to this robustness is the proper choice
of a global Poincaré section. This is possible due to recent
advances in our understanding of the structure of chaos in
low dimensiong7,8]. Specifically, we applied the algorithm
for constructing a global Poincaré section to the embeddings
described above. We find that the orbit identified in R8&f.
as a period-three orbit is actually the period-one node of the
standard Smale horseshoe. There is no difference between
the Poincaré section we construct for embeddingg3rand
the constant phase plage=const in the original phase space
R?x St With this proper choice of Poincaré section, all
braids are well defined and similar from one embedding to
, , , , , , L another. They differ from each other in a limited number of
0 A ways. Specifically, their organization is identical up to mirror
image (handedness, or parijtyglobal torsion, and knot type
FIG. 11. Vertical distance between the orbit segments at the fouof the embedding i3, although all embeddings studied in
points a, b, ¢, d. These are points of apparent self-inter- this work turn out to be unknotted. We believe that embed-
section when projected to thé,X plane. Real self-intersections dings of strange attractors i? can differ from each other in
occur inR® when the vertical offset is zero. only these three ways.

VIIl. SUMMARY AND CONCLUSIONS

Vertical Distance
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